Synthesis of a New Porphyrin-fluorescein Hybrid and its Supramolecular Self-assembly with Amino-porphyrinatomanganese(III) by Hydrogen-bonding

Jia Zheng LU, Jin Wang HUANG*, Li Fen FAN, Jie LIU, Ke Zhuan XU, Xian Li CHEN, Liang Nian JI

School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275

Abstract: A new porphyrin-fluorescein hybrid **2** (FI-PPTPP) has been synthesized and characterized by UV-Vis, IR, ¹H-NMR, ESI-MS and elemental analysis. The supramolecular self-assembly of FI-PPTPP with amino-porphyrinatomanganese(III) [Mn^(III) (*p*-APTPP)Cl] by hydrogen-bonding was studied using fluorescence spectroscopic titration and ESI-MS.

Keywords: Porphyrin, fluorescein, amino-porphyrinatomanganese(III), supramolecular, self-assembly, hydrogen-bonding.

In recent years, numerous new model have been developed for understanding electron and energy transfer processes in the photochemical reaction center of photosynthesis ¹⁻⁸. There are several examples in the literature of newly created model dimeric structures that involve conjugated bridges in the context of the donor-acceptor model system of porphyrin-fluorescein with diad-chromophoric ^{3,4}. Here we report the synthesis of a new porphyrin-fluorescein hybrid in which porphyrin is linked to fluorescein through an ether bond and its supramolecular self-assembly with manganese (III) chloride of 5-(p-amino) phenyl-10,15,20-triphenylporphyrin, Mn^(III)(*p*-APTPP)Cl by hydrogen-bonding. It will provide a new model of photochemical reaction center of photosynthesis.

The synthetic route of the new porphyrin-fluorescein hybrid was shown in **Scheme 1**. A mixture of compound **1** (0.095 g /0.125 mmol), fluorescein (0.2 g/0.65 mmol), DMF (25 mL), anhydrous potassium carbonate (0.5 g) and potassium iodide (0.05 g) was stirred for 36 h at 35°C under a nitrogen atmosphere. The mixture was diluted with 50 mL chloroform. The organic layer was washed with water (5×50 mL) and was dried with anhydrous sodium sulfate and concentrated *via* rotary evaporation. The residue was then chromatographed on a silica gel column using chloroform as eluent to give four bands. The third band was collected and stripped on a rotary evaporator. The crude products were further purified by TLC and yielded a purple solid. Yield of **2** was 47.1%. ¹H-NMR(500Hz, DMSO, δ ppm): chemical shift δ 11.23(s, 1H, COOH), 8.9-8.76(m, 8H, H-6), 8.0-8.2 (d, 6H, d, *J* = 7.8Hz, H-4), 7.88-8.0 (d, 2H, *J* = 8.0Hz, H-2), 7.80-7.86 (m, 11H, H-1, 3, 5), 7.19-7.5(d, 4H, *J* = 8.7Hz, H-10~13), 6.2-6.9 (m, 6H, H-

^{*} E-mail: ceshjw@zsu.edu.cn

Scheme 1

14~16), 3.9-4.2(t, 2H, *J*=6.4Hz, H-7), 3.2(t, 2H, *J*=4.6Hz, H-8), 1.9(t, 2H, *J*=6.2Hz, H-9), -2.89(s, 2H, pyrrole ring); IR (KBr, cm⁻¹): 3316.5(amide N-H), 1723.5 (COOH, C=O), 1639.5 (C=O); Uv-Vis (λ_{max} , CHCl₃): 417, 512, 550, 591 and 646 nm; ESI-MS (*m*/*z*): M⁺, 1003.40; Anal. calcd. (found): C 80.12 (79.93), H 4.68(4.96), N 5.58 (5.49)%.

The ¹H-NMR, UV-Vis, IR, ESI-MS and elemental analysis were fully in agreement with the structures of **2**. It is worth noting that the characteristic proton signal at 11.23 ppm attributed to the proton of -COOH was observed and indicates that the carboxyl on fluorescein moiety is free and is not reacted with Br on **1** to form an ester bond.

The fluorescence spectroscopic titration experiment was carried out to estimate the supramolecular self-assemble of FI-PPTPP with Mn^(III) (p-APTPP)Cl. The fluorescence spectra (λ_{exc} =417 nm) of Fl-PPTPP in CH₂Cl₂ are shown in **Figure 1** (dot line). As it can be seen, the fluorescence intensity of Fl-PPTPP at 656.4 nm decreased upon the addition of Mn^(III)(p-APTPP)Cl (Figure 1). Experiment indicated that Mn^(III) (p-APTPP) Cl has no fluorescent emission in any range of concentration, which is related to the paramagnetic of Mn^{3+} ion $^{3, 5-7,10}$. We believe that the decrease in the fluorescence intensity resulted from the interaction between Fl-PPTPP and Mn^(III) (p-APTPP)Cl. In the control experiment, in which Mn^(III)(p-APTPP)Cl was replaced by Mn^(III) (TPP)Cl (TPP: 5,10,15,20-tetraphenylporphyrin), the fluorescence spectrum of Fl-PPTPP did not change. On considering the structure difference between Mn^(III)(p-APTPP)Cl and Mn^(III)(TPP)Cl, the fluorescence quenching of the Fl-PPTPP/Mn^(III)(p-APTPP)Cl system is related to the amino group of Mn^(III)(p-APTPP)Cl, that is, a hydrogen-bonding can form through the carboxyl group in Fl-PPTPP and the amino group in Mn^(III)(p-APTPP)Cl. It is obvious that the fluorescence quenching of Fl-PPTPP by Mn^(III)(p-APTPP)Cl is caused by the formation of a Fl-PPTPP-Mn^(III)(p-APTPP)Cl supramolecule self-assembled via hydrogen-bonding and effective photo-induced electron transfer from Fl-PPTPP (electron donor) to Mn^(III)(p-APTPP)Cl (electron acceptor)^{3, 8-10}. Upon addition of a hydrogen-bonded solvent, such as methanol and ethanol, to the Fl-PPTPP/Mn^(III)(p-APTPP)Cl system, the fluorescence intensity was gradually restoration, which further supported the conclusion that hydrogen-bonding is the driving force of supramolecular self-assembly. Because the concentrations of the Fl-PPTPP (fluorescent molecule) and Mn^(III)(p-APTPP)Cl (quencher) used in the fluorescence spectroscopic titration experiment were all in the range of $0 \sim 1.2 \times 10^{-7}$

Synthesis of a New Porphyrin-fluorescein Hybrid

mol.L⁻¹ in which the fluorescence quenching of Fl-PPTPP in the Fl-PPTPP/ $Mn^{(III)}(p-APTPP)Cl$ system was static quenching indicated by experiments, so the association constant K_c of Fl-PPTPP-Mn^(III)(*p*-APTPP)Cl supramolecule can be calculated using the follow equation^{3,5}:

$$I_0/I_f = 1 + K_c[Q]$$
 (1)

Where I_0 is the fluorescence intensity in the absence of quencher, I_f is the intensity in the presence of quencher at concentration [Q]. The association constant of Fl-PPTPP-Mn^(III)(*p*-APTPP)Cl supramolecule was calculated to be $(5.87 \pm 0.21) \times 10^7$ (mol⁻¹·L) from the fluorescence titration data.

Figure 1Fluorescence spectroscopic titration of Fl-PPTPP by $Mn^{(III)}$ (p-APTPP) Cl).
[Fl-PPTPP]: 3.0×10^{-8} mol/L. [Mn^(III) (p-APTPP) Cl]: $0 \sim 1.5 \times 10^{-7}$ mol/L.

Figure 2 Selected areas of the ESI mass spectra of FI-PPTPP/ $Mn^{(III)}(p$ -APTPP)Cl with a fixed 1:1 molar ratio in CH_2Cl_2 : (a) experimental, (b) calculated (computer simulated).

Jia Zheng LU et al.

The selected areas of the ESI mass spectra of a 1:1 mixture of FI-PPTPP and $Mn^{(III)}(p-APTPP)Cl$ is shown in **Figure 2**. A pseudomono-molecular ion [FI-PPTPP-Mn^(III)(*p*-APTPP)]⁺ with the loss of Cl⁻, at *m*/*z* 1685.47 was observed. The result clearly shows the presence of five isotopic peaks are all in good agreement with the calculated form, indicating that the supramolecule was formed. ESI-MS supports the conclusion that FI-PPTPP-Mn- (*p*-APTPP) Cl supramolecule formed in CH₂Cl₂.

In summary, we have demonstrated a convenient route to the preparation of a new porphyrin-fluorescein hybrid and its supramolecular self-assembly with amino-porphyrinatomanganese(III) by hydrogen-bonding. Further studies including thedetailed mechanisms for the photoinduced electron transfer processes in the supra-molecule are in progress.

Acknowledgments

We are gratefully acknowledged financial support of this work by the National Natural Science Foundation of China (20071034) and the N.S.F of Guangdong Province of China.

References

- 1. F. David A. Williamson, Bruce E. Bowler, Inorg. Chim. Acta, 2000, 297, 47.
- 2. C.A. Hunter and R. K. Hde, Angew. Chem. Int. Ed. Engl., 1996, 35(17), 1936.
- 3. T. Li, J. W. Huang, L. Ma, L. N. Ji, Trans. Met. Chem., 2003, 28,288.
- 4. J. W. Huang, S. G. Hu, T. Li, L. F. Fan and L. N. Ji, Spectrochimica Acta, Part A: Mol. and Biomol. Spectrosc., 2003, 59(2), 585.
- 5. T. X. Yan, M. Zhang, T. Shen et al., Science in China (series B), 1997, 27(3), 282
- 6. T. Arimura, T. Nishioka, S. Ide, Yasuhiro, J. Photochem. Photobiol. A: Chem., 2001, 145, 123.
- 7. Biesaga, M. Pyrzynska and K. Trojanowicz, A Review, Talanta., 2000, 51(2), 209.
- 8. N. Nagata, Si. Kugimiya and Y. Kobuke, J, Chem. Soc. Chem. Commun., 2000, 1389.
- 9. Megown, K. Nithipatikom, Appl. Spectrosc. Rev., 2000, 35(4), 353.
- 10. G. C. Catena and F. V. Bright, Anal. Chem., 1989, 61, 905.

Received 9 February, 2004